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Abstract	1	

This	study	examines	the	benefit	of	assimilating	cloud	motion	vector	(CMV)	wind	2	

observations	obtained	from	the	Multi-angle	Imaging	SpectroRadiometer	(MISR)	3	

within	a	Modern-Era	Retrospective	Analysis	for	Research	and	Applications-2	4	

(MERRA2)	configuration	of	the	Goddard	Earth	Observing	System-5	(GEOS-5)	model	5	

Data	Assimilation	System	(DAS).		Available	in	near	real	time	(NRT)	and	with	a	6	

record	dating	back	to	1999,	MISR	CMVs	boast	pole-to-pole	coverage	and	geometric	7	

height	assignment	that	is	complementary	to	the	suite	of	Atmospheric	Motion	8	

Vectors	(AMVs)	included	in	the	MERRA2	standard.	Experiments	spanning	9	

September-October-November	of	2014	and	March-April-May	of	2015	estimated	10	

relative	MISR	CMV	impact	on	the	24-hour	forecast	error	reduction	with	an	adjoint	11	

based	forecast	sensitivity	method.	MISR	CMV	were	more	consistently	beneficial	and	12	

provided	twice	as	large	a	mean	forecast	benefit	when	larger	uncertainties	were	13	

assigned	to	the	less	accurate	component	of	the	CMV	oriented	along	the	MISR	14	

satellite	ground	track,	as	opposed	to	when	equal	uncertainties	were	assigned	to	the	15	

eastward	and	northward	components	as	in	previous	studies.		Assimilating	only	the	16	

cross-track	component	provided	60%	of	the	benefit	of	both	components.		When	17	

optimally	assimilated,	MISR	CMV	proved	broadly	beneficial	throughout	the	Earth,	18	

with	greatest	benefit	evident	at	high	latitudes	where	there	is	a	confluence	of	more	19	

frequent	CMV	coverage	and	gaps	in	coverage	from	other	MERRA2	wind	20	
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observations.		Globally,	MISR	represented	1.6%	of	the	total	forecast	benefit,	whereas	21	

regionally	that	percentage	was	as	large	as	3.7%.22	
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1 Introduction	1	

Atmospheric	motion	vectors	(AMVs),	a	proxy	measure	of	wind,	are	2	

indispensable	to	regional	and	global	numerical	weather	prediction	(NWP)	models	3	

and	analyses.		Derived	from	tracking	cloud	or	water	vapor	features	in	satellite	4	

imagery,	AMVs	fill	some	critical	conventional	observation	data	gaps	(e.g.,	the	Arctic,	5	

Antarctic	and	global	oceans).		However,	there	remain	regions	where	wind	6	

observations	are	sparse	or	unavailable,	notably	in	the	high	latitude	band	(55-65°	7	

North/South)	between	AMVs	obtained	from	regular	geosynchronous	(GEO)	8	

instrument	imagery	and	those	obtained	from	consecutive	orbits	of	lower	earth	orbit	9	

(LEO)	instruments.	AMVs	from	composite	LEO-GEO	(e.g.	Lazzara	et	al.,	2014)	and	10	

from	constellations	of	LEO	instruments	(e.g.	Borde	et	al.,	2016)	increasingly,	but	not	11	

entirely,	mitigate	these	gaps.		AMVs	from	LEO	are	also	limited	at	low	levels	12	

(pressures	>	700	hPa)	by	concerns	about	the	accuracy	of	the	radiometric	heights	13	

assigned	there,	which	have	led	multiple	NWP	centers	to	exclude	low	level	AMVs	14	

from	operational	assimilation	(Salonen	et	al.,	2015).		Cloud	motion	vector	wind	15	

observations	derived	from	the	Multi-angle	Imaging	SpectroRadiometer	(MISR)	16	

instrument	onboard	the	polar-orbiting	Terra	could	help	mitigate	the	above	coverage	17	

gaps	(Mueller	et	al.,	2013),	since	their	heights	are	retrieved	by	geometric	techniques	18	

and	their	coverage	is	nearly	global	and	concentrated	in	the	lower	troposphere.		19	

	20	
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MISR	measures	reflected	solar	radiation	in	four	bands	from	onboard	the	sun-21	

synchronous	Terra	satellite	at	nine	distinct	viewing	zenith	angles	including	nadir	22	

(0°)	and	four	angles	(26°,	46°,	60°,	and	70°)	distributed	along-track	both	forward	23	

and	aft	relative	to	Terra's	flight	direction.		The	motion	and	height	of	underlying	24	

cloud	features	are	obtained	from	a	single	MISR	overpass	by	tracking	their	25	

progression	within	275	m	resolution	380	km	swath	width	red	band	imagery	over	26	

the	3.5	minute	interval	between	the	initial	70°	forward	view	and	nadir,	and	then	27	

again	for	the	same	interval	between	nadir	and	the	final	70°	aft	view	(Horvath	and	28	

Davies,	2001a;	Mueller	et	al.,	2013).		Aside	from	the	nadir	and	70°,	a	third	view	29	

angle	of	26°	is	necessarily	used	to	differentiate	between	parallax	and	along-track	30	

cloud	motion.		This	approach	yields	a	precise	geometric	height	and	cross-track	wind	31	

component,	but	a	relatively	less	precise	along-track	wind	that	is	sensitive	to	the	32	

accuracy	of	feature	tracking	and	georegistration	(Zong	et	al,	2002;	Horvath	and	33	

Davies,	2001).	The	MISR	wind	height,	cross-track,	and	along-track	components	have	34	

respective	precision	of	190	m,	1.1	ms-1,	and	1.8	ms-1	(Horvath	2013).		The	retrieval	35	

algorithm	is	attuned	to	stratocumulus,	frequently	tracking	them	despite	the	presence	36	

of	overlying	clouds	with	less	distinct	texture.		As	a	result,	the	overwhelming	37	

majority	(>95%)	of	MISR	CMV	sampling	is	found	at	low	levels,	and	sampling	is	far	38	

better	over	ocean	than	land.	39	

The	geometric	heights	assigned	to	MISR	CMVs	are	not	prone	to	the	significant	40	

difficulties	with	radiometric	heights	assigned	to	other	AMVs,	which	are	recognized	41	

as	a	key	limitation	to	their	forecast	benefit	(Su	et	al.,	2012).		AMV	height	uncertainty	42	

accounts	for	70%	of	vector	wind	differences	between	other	types	of	AMV	and	43	
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rawinsonde	(Velden	et	al.,	2008).		Particularly	uncertain	are	low	level	radiometric	44	

heights	(pressures	>700	hPa)	assigned	to	broken	or	semitransparent	clouds	or	in	45	

regions	where	the	temperature	lapse	rate	is	small	(e.g.,	polar	regions)	or	inverted	46	

(e.g.,	the	marine	boundary	layer).		In	the	arctic,	where	these	conditions	are	typical,	47	

low	level	AMVs	are	deemed	unreliable	(Key	et	al.,	2003;	Santek	et	al.,	2010).		In	48	

comparisons	with	AMVs	derived	from	the	Geostationary	Operational	Environmental	49	

Satellite	(GOES),	MISR	CMVs	have	been	shown	to	have	less	biased	heights	in	the	800	50	

hPa	–	600	hPa	(~2-4	km	height)	range	(Mueller	et	al.,	2017),	consistent	with	similar	51	

findings	of	AMV	height	bias	relative	to	reanalysis	(Salonen	et	al.,	2015).		At	the	same	52	

time,	MISR	CMV	heights	are	prone	to	uncertainty	distinguishing	parallax	from	along-53	

track	motion,	leading	to	correlation	of	error	in	these	components	and	tendency	to	54	

overestimate	the	heights	of	upper	level	(>	300	hPa	(~7	km))	CMVs,	though	these	55	

comprise	less	than	5%	of	total	CMV	sampling	(Mueller	et	al.,	2017).		56	

Several	studies	have	provided	preliminary	evaluations	of	the	forecast	benefit	57	

MISR	winds	might	provide.		The	first	of	these	studies,	Baker	et	al.,	2014,	employed	58	

an	adjoint	method	to	quantify	the	reduction	of	24-hour	forecast	errors	from	59	

assimilating	MISR	CMV	amongst	a	suite	of	additional	observations	with	the	NAVy	60	

Global	Environmental	Model	(NAVGEM)	4D-Var	Data	Assimilation	System.		They	61	

found	that	MISR	winds	reduced	24-hour	global	forecast	errors,	attributing	much	of	62	

that	error	reduction	to	lessening	a	relative	dearth	of	low-level	wind	observations	63	

assimilated	by	their	model.		Yamashita	(2014)	tested	assimilation	of	MISR	CMV	in	64	

addition	to	routine	observations	within	the	4D-VAR	NWP	system	of	the	Japan	65	

Meteorological	Agency,	and	found	increased	forecast	skill	over	all.		Cress	et	al.,	2014,	66	
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assimilated	MISR	CMV	within	the	operational	3D-VAR	numerical	weather	prediction	67	

(NWP)	system	of	the	German	Weather	Service	for	summer	and	winter	of	2010,	68	

finding	a	benefit	to	the	anomaly	correlation	of	500	hPa	geopotential	heights	69	

between	forecast	and	analysis.	70	

These	previous	studies	directly	assimilated	zonal	and	meridional	components	71	

of	MISR	CMV	retrievals,	with	no	explicit	mechanism	to	capitalize	on	the	greater	72	

accuracy	of	the	cross-track	components	of	winds	reported	by	MISR.	In	this	study,	we	73	

have	decomposed	MISR	CMV	into	along-track	and	cross-track	in	order	to	assign	74	

appropriate	uncertainties	to	each	component	and	also	explored	the	impact	of	75	

assimilating	only	the	more	accurate	cross-track	component.		Complementing	earlier	76	

studies,	we	evaluate	the	forecast	impact	of	MISR	CMV	using	the	Modern-Era	77	

Retrospective	Analysis	for	Research	and	Applications-2	(MERRA2)	3D-VAR	78	

configuration	of	the	Goddard	Earth	Observing	System-5	(GEOS-5)	model	Data	79	

Assimilation	System	(DAS)	(Gelaro	et	al.,	2017).		80	

The	remaining	sections	are	organized	as	follows:		section	2	describes	the	81	

datasets,	experiments	and	diagnostic	tools	used	to	assess	MISR	winds	benefit	to	the	82	

analysis	and	forecast.		Section	3	summarizes	the	results,	including	comparison	of	83	

techniques	and	parameters	for	assimilating	MISR	winds.		Section	4	provides	84	

discussion	and	conclusions.	85	
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2 Data	and	methods	86	

2.1 Review	and	use	of	MISR	CMV	products	87	

Two	distinct	sources	of	MISR	CMVs	are	employed	in	this	study,	the	monthly	88	

aggregated	MISR	Level	3	CMV	product	and	the	Level	2	NRT	CMV	product.		The	two	89	

products	are	available	online	and	respectively	tagged	as	MI3MCMVN	and	90	

MI2TC_CMV_HDF_NRT	at	the	NASA	Langley	Distributed	Active	Archive	Center.		The	91	

former	is	available	with	24	hour	latency	archived	back	to	2000,	the	latter	with	NRT	92	

latency	(95%	of	CMVS	in	under	2.5	hours)	archived	30	days	back	from	present.			93	

Excluded	from	this	study	are	two	other	MISR	products	containing	CMV	less	suitable	94	

for	assimilation.		The	MISR	Level	2	Cloud	product	(tagged	MIL2TCSP)	contains	a	95	

superset	of	CMV	from	the	Level	3	CMV	product	that	includes	retrievals	of	lower	96	

quality.	The	MISR	Level	2	Stereo	product	(tagged	MIL2TCST)	contains	less	accurate	97	

CMV	retrieved	by	a	legacy	algorithm.	98	

	99	

The	Level	2	NRT	CMV	product	uses	the	same	retrieval	and	quality	control	100	

algorithms	as	the	standard	Level	3	CMV	product,	generating	results	comparable	to	101	

the	latter.		However,	the	two	products	have	minor	differences	owing	to	differences	102	

between	the	NRT	and	standard	processing	(STD)	versions	of	upstream	Level	0	(L0)	103	

and	Level	1	(L1)	data	inputs.		The	NRT	software	pipeline	is	applied	to	incoming	L0	104	

instrument	and	satellite	data	in	sessions	associated	with	as	little	as	five	minutes	of	105	

data,	whereas	the	standard	pipeline	operates	on	the	same	data	consolidated	into	106	

sessions	comprising	one	full	orbit	(90	minutes).		Without	this	consolidation,	NRT	107	
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processing	is	subject	to	lost	coverage	associated	with	gaps	in	the	availability	of	108	

necessary	inputs	at	time	of	processing.			Additionally,	the	continuously	updated	109	

record	of	corrections	to	camera	pointing	used	to	perform	in-flight	geometric	110	

calibration	is	sensitive	to	the	differences	between	NRT	and	STD	processing.		111	

Calibration	discrepancies	are	responsible	for	a	root-mean-square-vector-difference	112	

(RMSVD)	of	3	m	s-1	between	collocated	Level	2	NRT	CMVs	and	Level	3	CMVs	113	

(Mueller	et	al.,	2013b).	114	

	115	

2.2 GEOS-5	model,	assimilation	system,	and	adjoint	methodology	116	

This	study	employs	version	5.13.0	of	the	GEOS-5	DAS,	with	revisions	to	support	117	

MISR	winds	assimilation	and	determination	of	adjoint	sensitivity.		Version	5.13.0	is	118	

associated	with	officially	released	GEOS-5	data	products	between	20	September	119	

2014	and	1	May	2015.		The	C180	(1/2	degree	latitude-longitude)	grid	with	72	layers	120	

between	the	surface	and	0.01 hPa	is	employed,	with	default	version	5.13.0	model	121	

parameters	and	assimilated	observations	(other	than	MISR	CMV)	defined	by	the	122	

MERRA-2	reanalysis	(Gelaro	et	al.,	2017).		MERRA-2	incorporates	a	broad	range	of	123	

observations,	including	geostationary	AMVs	from	GOES,		124	

The	meteorological	analysis	in	GEOS-5	uses	the	Gridpoint	Statistical	125	

Interpolation	(GSI)	3D-Var	[Wu	et	al.,	2002;	Purser	et	al.,	2003a,	2003b]	assimilation	126	

methods.		The	objective	of	the	assimilation	is	to	produce	an	analysis	field	for	which	a	127	

cost	function	constructed	from	the	observation-minus-analysis	(O-A)	residuals	is	128	

minimized	subject	to	assumed	forecast	and	observation	error	statistics	[Cohn,	129	

1997].	The	GSI	performs	minimization	relative	to	control	variables	including	stream	130	
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function	contribution	from	wind,	unbalanced	velocity	potential	function,	unbalanced	131	

temperature,	unbalanced	surface	pressure,	moisture,	cloud	water,	ozone,	and	132	

coefficients	for	the	bias	correction	of	the	satellite	radiance	data.	133	

An	adjoint	sensitivity	method	is	employed	to	calculate	the	impact	of	each	134	

individual	observation	on	the	short-range	forecast	simultaneously,	producing	135	

results	that	can	be	easily	aggregated	by	data	type,	location,	channel,	etc		[Gelaro	et	136	

al.,	2007;	Zhu	and	Gelaro,	2008;	Gelaro	et	al.,	2010].		It	is	the	same	method	used	137	

operationally	to	monitor	and	evaluate	the	impact	of	assimilated	observations.		138	

Impacts	are	measured	relative	to	24-hour	and	30-hour	forecast	error	differences	in	139	

total	moist	energy.	The	forecast	error	is	measured	against	analysis	state	at	the	140	

verification	time,	t=24	hours	(Langland	and	Baker,	2004).	The	24-hour	and	30-hour	141	

forecast	are	initiated	at	time,	t=0	hours,	and	at	time,	t=-6	hours,	respectively.	The	142	

difference	between	the	former	and	latter	forecasts	are	due	to	observations	143	

assimilated	at	the	analysis	time	t=0	hours.		The	method	is	undertaken	for	every	6-144	

hour	time	step,	facilitating	impact	assessment	of	all	assimilated	observations	in	each	145	

experiment.	146	

	147	

2.3 Experiments	148	

2.3.1 Thinning	and	screening	methods	149	

MISR	CMV	are	reported	with	17.6	×	17.6	gridded	resolution	with	vertical	150	

coordinates	of	height	relative	to	the	Earth's	ellipsoid.			For	this	study,	the	set	of	CMV	151	

reported	per	time	step	was	thinned	such	that	only	one	CMV	could	be	assimilated	per	152	

100	km	x	100	km	x	100	hPa	volume	on	a	model	aligned	grid.		This	thinning	included	153	
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simple	transformation	of	MISR	reported	geometric	height,	h,	into	pressure	154	

coordinates	assuming	a	constant	standard	atmosphere,	that	is:	155	

𝑝 = 𝑝!𝑒!!!	

where	k=1.186×10-4	m-1,	and	ps=1013.25	hPa.			Note	that	this	height-pressure	156	

conversion	formula	was	only	used	in	the	thinning	process,	while	the	model	157	

geometric	height	and	observation	height	was	used	in	vertical	interpolation	during	158	

data	assimilation	process.	In	addition	to	spatial	thinning,	MISR	CMV	with	heights	159	

reported	below	model	surface	elevation	or	above	15	km	were	also	excluded.		For	all	160	

the	experiments	listed	in	section	2.3.3,	a	gross-error	threshold	was	also	applied	to	161	

screen	CMV	differing	from	background	state	by	more	than	8.0	ms-1.				162	

Quality	Indicator	(QI)	values	assigned	to	MISR	CMV	were	given	no	influence	on	163	

the	uncertainty	assigned	during	assimilation.		CMV	QI	values	are	a	measure	of	164	

retrieval	consistency	between	neighbors	and	between	redundant	forward	and	aft	165	

camera	based	estimates.		German	Weather	Service	experiments	found	CMV	QI	to	166	

poorly	predict	CMV	influence	on	forecast	skill	(Cress,	2014).		Consistent	with	their	167	

finding,	our	own	experiments	show	negligible	correlation	between	per	observation	168	

MISR	CMV	forecast	impact	and	QI.	169	

	170	

2.3.2 Assimilation	methods,	uncertainty	assignment,	and	assimilation	experiments	171	

Table	1	lists	model	experiments,	three	of	which	differ	in	the	way	the	winds	were	172	

assimilated	and	the	uncertainty	was	assigned	to	each	MISR	CMV,	all	sharing	the	173	

same	September-October-November	(SON)	time	period	in	2014.			In	the	first	174	
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experiment,	labeled	UV,,	we	assimilate	MISR	zonal	(u)	and	meridional	wind	(v)	175	

directly,	the	same	as	the	assimilation	methods	employed	in	previous	MISR	wind	176	

assimilation	studies	(e.g.,	Baker	et	al.,	2014).	The	uncertainties	applied	with	this	177	

method	are		3.0	ms-1	for	the	u	and	v	vector	components.		The	components	are	not	178	

treated	independently,	so	either	both	components	are	rejected	or	neither	during	179	

assimilation.	In	the	second	experiment,	labeled	ATCT,	each	MISR	CMV	is	translated	180	

into	along-track	and	cross-track	components	based	on	viewing	geometry	that	are	181	

then	assimilated	independently	with	respective	uncertainties	of	8.0	ms-1	and	2.0	ms-182	

1.		This	approach	takes	advantage	of	the	cross-track	having	greater	theoretical	183	

accuracy	(Zong	et	al,	2002;	Horvath	and	Davies,	2001).	The	assigned	uncertainty	for	184	

the	cross-track	wind	is	the	same	as	assessed	in	validation	studies	(Horvath	2013,	185	

Mueller	et	al.,	2017).		The	uncertainty	of	8.0	m/s	for	the	along-track	MISR	CMV	is	186	

conservative,	being	set	much	greater	than	the	global	along-track	RMS	difference	187	

relative	to	GOES	AMV	(3.2	ms-1)	in	order	to	limit	the	potential	influence	of	along-188	

track	bias	and	regions	of	greater	uncertainty		(Mueller	et	al.,	2017).	In	the	third	189	

experiment,	labeled	CT,		only	the	more	accurate	cross-track	wind	component	is	190	

assimilated.		Lastly,	a	control	experiment,	labeled	CONTROL,	was	conducted	for	the	191	

same	time	period,	but	with	no	assimilation	of	MISR	CMV.	192	

In	addition	to	the	above	experiments	comparing	assimilation	methodology,	two	193	

variations	of	the	ATCT	experiment	were	conducted	using	the	same	assimilation	194	

approach.		The	first,	labeled	NRT,	uses	the	MISR	NRT	CMV	product	rather	than	the	195	

MISR	L3	CMV	product,	to	compare	their	relative	effectiveness.		The	second,	labeled	196	

ATCT15	extends	the	timespan	of	our	analysis	to	March-April-May	(MAM)	of	2015.			197	
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3 Results	and	Discussion	198	

3.1 Overview	199	

In	the	following	sections,	we	investigate	the	performance	of	three	assimilation	200	

approaches	through	comparisons	among	the	CT,	UV,	and	ATCT	experiments	(3.2);	201	

compare	the	sampling	and	net	impact	of	MISR	CMV	relative	to	other	assimilated	202	

observations	for	the	ATCT	and	ATCT_15	experiments	(3.3);	and	assess	the	203	

consistency	of	MISR	CMV	sampling	and	forecast	impact	between	the	NRT	CMV	and	204	

the	standard	processing	(3.4).		205	

3.2 Sensitivity	of	forecast	impact	to	three	methods	of	assimilating	MISR	CMVs	206	

Comparisons	of	mean	forecast	benefit	among	ATCT,	UV,	and	CT	experiments	207	

applying	distinct	assimilation	methodologies	to	the	same	data	inputs	demonstrate	208	

the	superiority	of	the	ATCT	approach.		As	shown	in	Table	2,	the	mean	impact	per	209	

six-hour	time	step	contributed	by	the	assimilated	MISR	CMV	was	-25±18 mJ kg-1 for	210	

ATCT,	roughly	twice	that	of	UV	and	70%	greater	than	that	of	the	CT	experiment.		211	

Figures	1d,	e,	and	f	present	observation-minus-forecast	(OMF)	(six-hour	212	

forecast)	statistics,	showcasing	negligible	OMF	bias	for	assimilated	cross-track	213	

components	of	MISR	CMV	during	the	ATCT	experiment,	but	bias	as	large	as	2.0	m	s-1	214	

for	the	along-track	component.		In	the	absence	of	model	or	observation	bias,	OMF	215	

should	be	unbiased	(e.g.,	Kalnay	2003).		Here,	along-track	OMF	bias	follows	a	216	

pattern	broadly	consistent	with	that	seen	in	comparison	between	MISR	CMVs	and	217	

GOES	AMVs	(Mueller	et	al.,	2017).		The	along-track	component	bias	at	lower	levels	218	

(below	750	hPa)	is	proportional	to	height.		The	bias	changes	from	negative	to	219	
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positive	around	the	peak	height	of	sampling	density,	at	850	hPa	in	the	top	row	of	220	

Figure	1.			This	is	a	consequence	of	the	correlation	(Zong	et	al.,	2002)	between	error	221	

in	the	height	and	error	in	the	along-track	component	of	MISR	CMVs	causing	222	

preferential	sampling	of	negative/positive	along-track	bias	at	heights	below/above	223	

the	peak	in	sampling.		Above	750	hPa,	MISR	CMV	along-track	bias	has	no	such	224	

gradient,	instead	being	consistently	on	the	order	of	1-2	ms-1	at	high	latitudes	where	225	

the	majority	of	sampling	is	found.	Over	the	tropics,	where	sampling	is	sparse,	the	226	

bias	is	not	evident.		Figures	1d,	1e,	and	1f	also	show	bias	profiles	for	the	UV	227	

experiment,	wherein	the	same	underlying	positive	along-track	bias	manifests	as	228	

principally	southward	component	bias	at	low	latitudes	and	both	westward	and	229	

southward	bias	at	mid	to	high	latitudes.	230	

Evident	in	Figures	1g,	h,	and	j,	heights	and	regions	where	the	along-track	bias	is	231	

most	pronounced	in	the	ATCT	experiment	also	show	the	largest	discrepancies	232	

between	UV	and	ATCT	in	the	forecast	error	reduction.	This	is	most	evident	in	the	233	

southern	extra-tropics	where	assimilation	of	the	v	component	in	the	UV	experiment	234	

actually	degrades	the	forecast	for	mid-level	CMVs	at	heights	from	900	hPa	to	500	235	

hPa.		In	contrast,	the	along-track	component	in	the	ATCT	experiment	is	consistently	236	

beneficial.		In	contrast	to	the	v	component,	the	assimilated	u	component	consistently	237	

improves	the	forecast,	but	to	a	far	lesser	degree	than	the	assimilated	cross-track	238	

component	in	the	ATCT	experiment,	which	is	largely	due	to	the	large	u	component	239	

bias	(Figure1	d,	e,	and	f)	and	random	errors	relative	to	cross-track	component	(2.5	240	

m/s	vs.	2.1	m/s).		It	is	also	evident	in	Figures	1a,	1b,	and	1c	that	the	same	heights	241	

and	regions	where	the	v-component	degraded	the	UV	forecast	also	produced	a	242	
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greater	number	of	rejected	CMV	in	UV	relative	to	ATCT.		The	northern	extra-tropics	243	

exhibit	the	same	trends	as	above,	though	to	a	lesser	extent.		The	trends	observed	in	244	

the	tropics	represent	an	instructive	counterpoint.		Because	the	mean	along-track	245	

bias	is	less	consistent	and	not	as	large	there,	and	because	the	projection	of	cross-246	

track	and	along-track	winds	is	more	aligned	with	u	and	v	components	there,	the	247	

forecast	benefit	is	roughly	equivalent	for	the	ATCT	and	UV	experiments.		248	

For	the	CT	experiment,	the	along-track	component	was	excluded	all	together.		249	

As	evident	for	all	latitude	bands	(Figures	1g,	h,	and	i),	assimilating	CT	only	250	

consistently	reduced	the	forecast	error,	but	choosing	not	to	assimilate	the	along-251	

track	component	had	an	adverse	effect	on	the	benefit	provided	by	the	cross-track	252	

component,	especially	over	the	extra-tropics,	reducing	its	benefit	by	as	much	as	253	

40%.		Riishojgard	et	al.	(2008)	also	showed	that	single	wind	component	254	

assimilation	produced	a	poorer	representation	of	that	field	in	the	analysis	state.	255	

They	argued	that	the	analysis	accuracy	of	single	wind	assimilation	depends	more	on	256	

the	forecast	error	covariance	specified	in	data	assimilation	compared	to	assimilating	257	

two	wind	components.	Stoffelen	et	al.	(2005)	and	Marseille	et	al.	(2008)	also	argued	258	

that	proper	background	error	covariance	is	essential	to	maximize	single	wind	259	

observation	impact.	In	CT,	we	used	the	same	forecast	error	covariance	as	in	the	260	

ATCT	case.	The	poorer	performance	of	CT	indicates	that	the	default	forecast	error	261	

covariance	does	not	accurately	capture	the	relationships	between	different	262	

dynamical	variables.	Since	the	wind	and	mass	fields,	such	as	pressure,	are	more	263	

tightly	coupled	over	the	extra-tropics	in	the	forecast	error	covariance,	the	264	
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degradation	of	assimilating	a	single	component	is	larger	over	the	extra-tropics	265	

compared	to	the	tropics	(Figure	1g,	h,	and	i).	266	

3.3 MISR	forecast	impact	relative	to	other	instruments	267	

The	global	24-hour	forecast	impact	amongst	MISR	CMVs	and	other	classes	of	268	

satellite	instruments	is	compared	for	the	ATCT_15	experiment	in	Figure	2a.		(The	269	

results	of	the	comparable	ATCT	experiment	are	roughly	equivalent,	with	minor	270	

differences	discussed	in	section	3.4).		MISR	CMVs	represent	1.6%	of	the	total	271	

forecast	benefit	from	all	of	the	observations,	while	AMVs	from	lower	earth	orbit	272	

(LEO)	and	geosynchronous	(GEO)	represent	~15%.		The	total	impact	of	satellite	273	

winds	is	second	behind	that	of	infrared	(IR)	and	microwave	(MW)	radiance	274	

observations,	which	represent	just	over	50%.		Rawinsonde	and	dropsonde	profiles	275	

(labeled	RAOB+SND)	and	in-situ	aircraft	measurements	that	include	wind,	276	

temperature,	and	pressure	each	represent	another	~12%.		Surface	wind	forcing	as	277	

measured	by	microwave	scatterometers	represent	1%	of	impact.		An	additional	278	

10%	of	forecast	impact	not	plotted	in	Figure	2a	is	contributed	by	various	land-	and	279	

ship-based	observations,	by	radio	occultation	observations,	and	by	pilot-balloon	280	

measurements	of	wind.		Figure	2b	shows	the	per-obs	impact	of	MISR	CMV	to	be	the	281	

largest	of	the	above	observation	groups,	with	magnitude	comparable	to	RAOB+SND.		282	

MISR	CMVs	are	broadly	beneficial	everywhere,	with	greatest	benefit	evident	at	283	

high	latitudes	where	there	is	a	confluence	of	more	frequent	CMV	coverage	and	gaps	284	

in	coverage	from	other	wind	observations.		For	example,	Figure	2c	shows	that	MISR	285	

CMV	contributes	3.7%	of	the	total	forecast	benefit	between	latitudes	55°	and	70°	286	

South,	more	than	double	that	of	the	global	mean	forecast	impact	of	1.6%.	Figure	3	287	
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shows	coverage	for	classes	of	wind	observations,	where	coverage	is	defined	by	the	288	

fraction	of	6	hour	periods	during	which	one	or	more	observation	was	assimilated	289	

within	each	2.5°	latitude	×	2.5°	longitude	grid	cell.		Figure	3a	shows	the	frequency	of	290	

CMV	coverage	in	the	months	of	SON	to	be	under	10%	at	low	latitudes,	and	up	to	291	

20%	or	50%	depending	on	season	at	high	latitudes.		MISR	CMV	coverage	is	292	

primarily	governed	by	the	satellite	repeat	interval,	varying	from	9	days	at	the	293	

equator	to	as	little	as	90	minutes	near	the	poles,	and	by	seasonal	variation	of	294	

available	sunlight	at	high	latitudes.		Greater	MISR	CMV	sampling	at	high	latitudes	295	

synergistically	coincides	with	gaps	between	LEO	and	GEO	AMV	coverage	evident	in	296	

Figure	3b,	ultimately	producing	greater	forecast	benefit	for	those	regions	as	evident	297	

in	Figure	4a.		Over	the	Southern	Ocean,	these	regions	also	coincide	with	a	paucity	of	298	

aircraft	and	sonde	observations	(Figures	3d	&	3e),	and,	correspondingly,	even	299	

greater	forecast	benefit.		Another	region	of	enhanced	MISR	CMV	benefit	(Figure	4a)	300	

is	found	over	central	Asia	in	the	gap	between	GEO	AMVs	captured	from	Meteosat-9	301	

and	MTSAT-2	instruments	(Figure	3b).		The	region	also	lacks	frequent	coverage	302	

from	aircraft	and	sondes	(Figures	3e	&	3f),	to	the	extent	that	the	rare	instances	of	303	

MISR	CMV	retrieved	there	have	outsized	influence.		Over	ocean,	the	geographic	304	

distribution	of	forecast	benefit	from	MISR	CMVs	is	rather	similar	to	that	of	305	

scatterometer	winds,	possibly	reflecting	the	fact	that	both	largely	or	entirely	306	

provide	low	level	constraints	on	the	wind	field	(Figures	3c	and	4c).		For	example,	307	

both	provide	negligible	benefit	over	large	swaths	of	the	tropical	Pacific	and	Atlantic	308	

oceans,	which	is	primarily	due	to	the	dense	wind	observations	from	the	default	LEO	309	

and	GEO	satellites	(Figure	4b).	Although	the	forecast	benefit	from	MISR	CMV	is	310	
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evidently	enhanced	where	coverage	from	other	wind	observations	is	sparse,	MISR	311	

CMVs	also	exhibit	significant	benefits	in	well-sampled	regions	such	as	the	North	312	

Pacific.	313	

3.4 Sensitivity	of	MISR	wind	forecast	impact	to	assimilation	time	period	and	314	

MISR	CMV	products		315	

ATCT_15	and	ATCT	were	carried	out	over	two	different	seasons:	boreal	summer	316	

and	fall	respectively.	Comparing	these	two	experiments	helps	identify	the	sensitivity	317	

of	MISR	wind	impact	to	time	of	year,	while	aggregating	them	provides	six	months	of	318	

simulation.	On	a	daily	basis,	MISR	CMVs	provide	a	consistent	24-hour	forecast	319	

benefit	throughout	ATCT	and	ATCT_15	as	indicated	in	Figure	5	by	a	time	series	of	320	

per	orbit	forecast	impact	wherein	the	running	mean	over	15	orbits	(i.e.	the	rough	321	

equivalent	of	24	hours)	is	always	beneficial	(i.e.	negative	contribution	to	forecast	322	

error	norm).		Measurements	of	forecast	impact	are	inherently	noisy,	with	the	323	

standard	deviation	of	per	orbit	CMV	impact	having	comparable	magnitude	to	the	324	

mean,	that	is	10	J	kg-1	×10-3.		Still,	the	overwhelming	majority	(88%)	of	orbits	with	325	

MISR	CMV	sampling	are	found	to	provide	a	net	forecast	benefit,	while	the	infrequent	326	

remainder	is	broadly	distributed,	such	that	no	duration	of	sequential	orbits	327	

contributes	a	significant	regression.		The	largest	single	orbit	forecast	regression	is	328	

28.9	J	kg-1	×10-3	during	ATCT.		As	visualized	in	Figure	5	and	Table	2,	the	number	of	329	

MISR	CMV	assimilated	on	a	per-orbit	basis	(2500)	varies	little	(±360)	in	ATCT	or	330	

ATCT_15.		Nor	does	the	number	of	CMV	rejected	(330±110)	during	computation	of	331	

model	analysis	state	through	incremental	minimization	of	the	GSI	cost	function.		332	
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		333	

The	near	equivalence	of	CMV	six-hourly	forecast	impacts	in	ATCT	and	ATCT_15	334	

is	a	coincidental	byproduct	of	ATCT	producing	16%	greater	impact	per	orbit	offset	335	

by	25%	fewer	orbits	producing	valid	CMV	sampling.			The	greater	per-orbit	CMV	336	

benefit	in	ATCT	can	be	traced	to	seasonality	of	sampling,	with	ATCT	having	a	greater	337	

fraction	of	total	sampling	located	over	the	Southern	Ocean	where	the	model	most	338	

benefits	from	assimilating	CMVs.	The	sampling	deficit	in	ATCT	can	be	traced	to	two	339	

gaps	evident	in	Figure	5	that	were	caused	by	a	temporary	suboptimal	software	340	

configuration	affecting	Terra	attitude	data	that	had	been	used	in	the	MISR	standard	341	

processing	chain	during	September	2014.		The	underlying	issue,	which	was	342	

identified	and	rectified	in	November	2014,	did	not	affect	other	Terra	instruments	or	343	

MISR	science	products,	and	also	did	not	affect	MISR	NRT	processing-	hence	the	344	

absence	of	gaps	in	Figure	6	corresponding	to	those	evident	in	Figure	5.	345	

	346	

Figure	6	shows	time	series	of	the	MISR	CMVs	impact	and	observation	count	in	347	

the	NRT	experiment,	which	assimilates	MISR	NRT	CMVs.	Relative	to	standard	348	

processing,	the	NRT	CMVs	are	prone	to	losses	of	sampling	due	to	timeliness	of	349	

necessary	data	input.		As	a	result,	NRT	assimilates	less	samples	per	orbit	(1900)	350	

with	greater	variability	of	per	orbit	sampling	(±600).		Relative	to	ATCT,	the	fraction	351	

of	sampling	in	NRT	(76%)	is	consistent	with	the	fraction	of	forecast	benefit	(72%)-	352	

that	is	6.8	out	of	9.5	J	kg-1	×10-3.		The	distribution	and	magnitude	of	forecast	353	

regressions	on	a	per	orbit	basis	are	also	comparable	to	ATCT.	354	

	355	
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4 Conclusions	356	

A	series	of	experiments	have	been	conducted,	demonstrating	the	benefit	of	357	

assimilating	cloud	motion	vectors	from	the	MISR	CMVs	over	periods	covering	358	

September-October-November	of	2014	and	March-April-May	within	the	GEOS-5	359	

DAS	as	determined	by	an	adjoint	based	forecast	sensitivity	method.		Whereas	360	

previous	studies	have	directly	assimilated	the	zonal	and	meridional	components	of	361	

MISR	CMVs,	this	study	demonstrates	more	consistently	beneficial	and	twice	as	large	362	

a	mean	forecast	benefit	when	assimilating	along-track	and	cross-track	components	363	

and	assigning	larger	uncertainties	to	less	accurate	along-track	component.	Although	364	

the	more	certain	cross-track	component	contributes	more	than	90%	of	the	total	365	

forecast	benefit	when	assimilating	both	along-track	and	cross-track,	assimilating	366	

only	the	latter	provides	only	60%	of	the	forecast	benefit	as	both.		Systematic	along-367	

track	bias	in	MISR	CMVs	consistent	with	earlier	studies	was	evident	in	OMF	368	

statistics.		This	factored	into	the	benefits	of	assigning	greater	uncertainty	to	the	369	

along-track.		Another	approach	worth	investigating	would	be	application	of	a	370	

height-	and	possibly	latitude-	dependent	along-track	bias	correction.		371	

The	overall	benefit	of	optimally	assimilating	MISR	CMVs	was	a	1.6%	372	

contribution	to	the	global	reduction	of	the	moist	energy	error	norm	for	24-hour	373	

forecasts,	with	about	twice	that	percentage	of	contribution	in	regions	such	as	the	374	

Southern	Ocean	that	are	less	well	observed.		Note	that	the	impact	on	24-hour	375	

forecast	error	reduction	is	only	one	measure	of	the	observation	impact.		The	overall	376	

reduction	on	24-hour	forecast	errors	from	assimilating	MISR	winds	corroborates	377	
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earlier	studies	showing	an	overall	benefit	from	MISR	CMVs	as	measured	by	various	378	

metrics	within	multiple	models	(e.g.,	Yamashita	(2014)).		The	magnitude	of	benefit	379	

is	promising	in	regard	to	the	multi-angle	retrieval	of	CMVs,	given	the	limitations	on	380	

MISR	coverage	imposed	by	its	relatively	narrow	360	km	swath.		A	single	wider-381	

swath	multi-angle	imager,	a	tandem	convoy	of	such	imagers	(which	avoids	the	382	

ambiguity	between	parallax	and	along-track	motion),	or	a	multitude	of	low	cost	383	

nano-satellite	variants	could	all	provide	significantly	greater	forecast	benefit.		384	
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Figure	Captions	91	
Figure	1:	Vertical	profiles	of	per	component	forecast	impact	of	UV,	ATCT,	and	CT	experiments	92	

Vertical	profiles	for	the	southern	hemisphere	extra-tropics	(left;	a,d,g),	the	tropics	93	
(middle;	b,e,h),	and	the	northern	hemisphere	extra-tropics	(right;	c,f,i),	are	shown	94	
for	sampling	(top;	a,b,c),	observation	minus	6-hour	forecast	(middle;	d,e,f),	and	95	
forecast	impact	(bottom;	g,h,i)	for	the	u	and	v	components	of	MISR	CMV	in	the	UV	96	
experiment	(labeled	uv	u	and	uv	v	in	legend);	the	along-track	(ATCT	at)	and	cross-97	
track	(ATCT	ct)	in	ATCT;	and	the	cross-track	components	(ct	ct)	in	CT.		98	
	99	
	100	
Figure	2:	Forecast	impact	of	various	observation	types	in	ATCT	and	ATCT_15	experiments	101	

The	mean	24-hour	forecast	global	(top;	a,b)	and	a	select	regional	(bottom;	c,d)	102	
impact	for	selected	types	of	observations	in	the	ATCT_15	experiments	as	103	
accumulated	per	6-hours	(left;	a,c)	and	per	observation	(right;	b,d).		Error	bars	104	
representing	standard	deviations	are	given,	alongside	percentages	of	total	impact.				105	
	106	
	107	
Figure	3:	Mapped	coverage	of	MISR	CMVs	relative	to	other	classes	of	observation	108	

Mapped	coverage	for	five	classes	of	observations	assimilated	in	ATCT	and	ATCT_15	109	
experiments	spanning	Sep.-Nov.	2014	and	Mar.-May	2015.		Coverage	is	measured	110	
per	2.5°	latitude	×	2.5°	longitude	map	grid	cell	by	the	fraction	of	six-hour	periods	111	
throughout	experiments	during	which	one	or	more	observations	were	assimilated	112	
within	that	grid	cell.		113	
	114	
	115	
Figure	4:	Adjoint	forecast	impact	of	MISR	CMVs	relative	to	other	classes	of	observation.	116	

As	in	Figure	2,	but	showing	mean	forecast	impact	accumulated	per	six-hour	period	117	
in	each	map	grid	cell.		118	
	119	
	120	
Figure	5:	Time	series	of	MISR	CMV	sampling	and	forecast	impact	per	orbit	for	ATCT	and	ATCT_15	121	

Time	series	of	forecast	impacts	(top;	a,b)	and	observation	counts	(bottom;	c,d)	for	122	
MISR	CMV	data	during	ATCT	experiment	(left;	a,c)	from	Sep.-Nov.	2014	and	123	
ATCT_15	experiment	(right;	b,d)	from	Mar.-May	2015.		Orbits	with	a	net	negative	124	
(i.e.	beneficial)	forecast	impact	are	indicated	in	blue,	the	rest	in	red.		Minima	and	125	
maxima	are	shown	in	upper	right.		A	running	mean	over	15	orbits	(i.e.	~1	day)	is	126	
plotted	in	black.		Numbers	of	observations	per	orbit	that	were	assimilated	(blue)	127	
and	rejected	(red)	are	shown	alongside	a	15	orbit	running	mean	(black).	128	
	129	
Figure	6:	Time	series	of	MISR	CMV	sampling	and	forecast	impact	per	orbit	for	NRT	130	

As	in	Figure	5,	but	for	experiment	NRT.	131	
	132	
	133	
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	137	

7 Tables	138	

Table	1	List	of	experiments,	durations,	and	assimilation	methods	139	

Experiment		 Duration	of	
experiment	

MISR	data	product	 Method	of	
assimilating	
MISR	winds	

CONTROL	 2014/09/02	-	
2014/12/01	

none	 none	

UV	 2014/09/02	-	
2014/12/01	

MISR	L3	CMV		 joint	u	and	v	
components	

ATCT	 2014/09/02	-	
2014/12/01	

MISR	L3	CMV		 independent	
along-track	and	
cross-track	
components	

CT	 2014/09/02	-	
2014/12/01	

MISR	L3	CMV		 Only	cross-track	
component	

ATCT_15	 2015/03/01	-	
2015/06/01	

MISR	L3	CMV	 independent	
along-track	and	
cross-track	
components	

ATCT_NRT	 2014/09/02	-	
2014/12/01	

MISR	NRT	CMV		 independent	
along-track	and	
cross-track	
components	

	140	
Table	2	Overview	of	experiment	statistics	141	

Label	 MISR	obs.	
per	6-
hours	

MISR	obs.	
per	valid	
orbit	

MISR	reject	
obs.	
per	valid	
orbit	

MISR	impact		
per	6-hours	
(J	kg-1	×10-3)	

MISR	impact	
per	valid	
orbit	
(J	kg-1	×10-3)	

MISR	impact	
per	obs.	
(J	kg-1	×10-6)	

UV	 6000±3000	 2400±360	 520±160	 -12±18	 -4.8±10.4	 -2.0±82.5	
ATCT	 6700±3100	 2500±360	 330±90	 -25±18	 -9.5±8.6	 -3.7±78.8	
CT	 3300±1600	 1300±180	 170±40	 -15±15	 -5.9±8.3	 -4.6±107.6	
ATCT_15	 8200±1900	 2500±350	 320±130	 -27±17	 -8.2±8.2	 -3.3±79.5	
ATCT_NRT	 6000±2200	 1900±600	 240±120	 -21±15	 -6.8±7.6	 -3.5±78.1	
	142	
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8 Figures	1	

Figure	1:	Vertical	profiles	of	per	component	forecast	impact	of	UV,	ATCT,	and	CT	experiments	2	

Vertical	profiles	for	the	southern	hemisphere	extra-tropics	(left;	a,d,g),	the	tropics	3	
(middle;	b,e,h),	and	the	northern	hemisphere	extra-tropics	(right;	c,f,i),	are	shown	4	
for	sampling	(top;	a,b,c),	observation	minus	6-hour	forecast	(middle;	d,e,f),	and	5	
forecast	impact	(bottom;	g,h,i)	for	the	u	and	v	components	of	MISR	CMV	in	the	UV	6	
experiment	(labeled	uv	u	and	uv	v	in	legend);	the	along-track	(ATCT	at)	and	cross-7	
track	(ATCT	ct)	in	ATCT;	and	the	cross-track	components	(ct	ct)	in	CT.		8	

		 	9	
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Figure	2:	Forecast	impact	of	various	observation	types	in	ATCT	and	ATCT_15	experiments	10	

The	mean	24-hour	forecast	global	(top;	a,b)	and	a	select	regional	(bottom;	c,d)	11	
impact	for	selected	types	of	observations	in	the	ATCT_15	experiments	as	12	
accumulated	per	6-hours	(left;	a,c)	and	per	observation	(right;	b,d).		Error	bars	13	
representing	standard	deviations	are	given,	alongside	percentages	of	total	impact.				14	
	15	

	16	
Figure	3:	Mapped	coverage	of	MISR	CMVs	relative	to	other	classes	of	observation	17	

Mapped	coverage	for	five	classes	of	observations	assimilated	in	ATCT	and	ATCT_15	18	
experiments	spanning	Sep.-Nov.	2014	and	Mar.-May	2015.		Coverage	is	measured	19	
per	2.5°	latitude	×	2.5°	longitude	map	grid	cell	by	the	fraction	of	six-hour	periods	20	
throughout	experiments	during	which	one	or	more	observations	were	assimilated	21	
within	that	grid	cell.		22	
	23	
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Figure	4:	Adjoint	forecast	impact	of	MISR	CMVs	relative	to	other	classes	of	observation.	26	

As	in	Figure	2,	but	showing	mean	forecast	impact	accumulated	per	six-hour	period	27	
in	each	map	grid	cell.		28	
		29	

	30	
	 	31	
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Figure	5:	Time	series	of	MISR	CMV	sampling	and	forecast	impact	per	orbit	for	ATCT	and	ATCT_15	32	

Time	series	of	forecast	impacts	(top;	a,b)	and	observation	counts	(bottom;	c,d)	for	33	
MISR	CMV	data	during	ATCT	experiment	(left;	a,c)	from	Sep.-Nov.	2014	and	34	
ATCT_15	experiment	(right;	b,d)	from	Mar.-May	2015.		Orbits	with	a	net	negative	35	
(i.e.	beneficial)	forecast	impact	are	indicated	in	blue,	the	rest	in	red.		Minima	and	36	
maxima	are	shown	in	upper	right.		A	running	mean	over	15	orbits	(i.e.	~1	day)	is	37	
plotted	in	black.		Numbers	of	observations	per	orbit	that	were	assimilated	(blue)	38	
and	rejected	(red)	are	shown	alongside	a	15	orbit	running	mean	(black).	39	
	40	

	41	
	42	
Figure	6:	Time	series	of	MISR	CMV	sampling	and	forecast	impact	per	orbit	for	NRT	43	

As	in	Figure	5,	but	for	experiment	NRT.	44	
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